Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 57(Pt 1): 209-214, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38322725

RESUMO

Recently, we introduced the liquid application method for time-resolved analyses (LAMA). The time-consuming cleaning cycles required for the substrate solution exchange and storage of the sensitive droplet-dispenser nozzles present practical challenges. In this work, a dispenser cleaning system for the semi-automated cleaning of the piezo-actuator-driven picolitre-droplet dispensers required for LAMA is introduced to streamline typical workflows.

2.
Nat Commun ; 14(1): 2365, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185266

RESUMO

We introduce the spitrobot, a protein crystal plunger, enabling reaction quenching via cryo-trapping with a time-resolution in the millisecond range. Protein crystals are mounted on canonical micromeshes on an electropneumatic piston, where the crystals are kept in a humidity and temperature-controlled environment, then reactions are initiated via the liquid application method (LAMA) and plunging into liquid nitrogen is initiated after an electronically set delay time to cryo-trap intermediate states. High-magnification images are automatically recorded before and after droplet deposition, prior to plunging. The SPINE-standard sample holder is directly plunged into a storage puck, enabling compatibility with high-throughput infrastructure. Here we demonstrate binding of glucose and 2,3-butanediol in microcrystals of xylose isomerase, and of avibactam and ampicillin in microcrystals of the extended spectrum beta-lactamase CTX-M-14. We also trap reaction intermediates and conformational changes in macroscopic crystals of tryptophan synthase to demonstrate that the spitrobot enables insight into catalytic events.


Assuntos
Proteínas , Cristalografia/métodos , Proteínas/química , Temperatura , Umidade , Cristalografia por Raios X
3.
Anal Chem ; 94(39): 13359-13367, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36153751

RESUMO

We present a cryogenic mass spectrometry protocol with the capability to detect peptides in the attomole dilution range from ice films. Our approach employs femtosecond laser pulses and implements neither substrate modification nor proton donor agents in the aqueous solution, known to facilitate analyte detection in mass spectrometry. In a systematic study, we investigated the impact of temperature, substrate composition, and irradiation wavelength (513 and 1026 nm) on the bradykinin signal onset. Our findings show that substrate choice and irradiation wavelength have a minor impact on signal intensity once the preparation protocol is optimized. However, if the temperature is increased from -140 to 0 °C, which is accompanied by ice film thinning, a somehow complex picture of analyte desorption and ionization is recognizable, which has not been described in the literature yet. Under cryogenic conditions (-140 °C), obtaining a signal is only possible from isolated sweet spots across the film. If the thin ice film is between -100 and -70 °C of temperature, these sweet spots appear more frequently. Ice sublimation triggered by temperatures above -70 °C leads to an intense and robust signal onset that could be maintained for several hours. In addition to the above findings, we notice that a vibrant fragmentation pattern produced is strikingly similar with both wavelengths. Our findings suggest that while following an optimized protocol, femtosecond mass spectrometry has excellent potential to analyze small organic molecules and peptides with a mass range of up to 2.5 kDa in aqueous solution without any matrix, as employed in matrix-assisted laser desorption/ionization (MALDI) or any substrate surface modification, found in surface-assisted laser desorption/ionization (SALDI).


Assuntos
Bradicinina , Prótons , Lasers , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
4.
Chem Sci ; 13(32): 9392-9400, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36093002

RESUMO

The concerted interplay between reactive nuclear and electronic motions in molecules actuates chemistry. Here, we demonstrate that out-of-plane torsional deformation and vibrational excitation of stretching motions in the electronic ground state modulate the charge-density distribution in a donor-bridge-acceptor molecule in solution. The vibrationally-induced change, visualised by transient absorption spectroscopy with a mid-infrared pump and a visible probe, is mechanistically resolved by ab initio molecular dynamics simulations. Mapping the potential energy landscape attributes the observed charge-coupled coherent nuclear motions to the population of the initial segment of a double-bond isomerization channel, also seen in biological molecules. Our results illustrate the pivotal role of pre-twisted molecular geometries in enhancing the transfer of vibrational energy to specific molecular modes, prior to thermal redistribution. This motivates the search for synthetic strategies towards achieving potentially new infrared-mediated chemistry.

5.
Chem Commun (Camb) ; 58(70): 9774-9777, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35968881

RESUMO

Thin single organic crystals (≤1 µm) with large area (≥100 × 100 µm2) are desirable to explore photoinduced processes using ultrafast spectroscopy and electron-diffraction. Here, we present a general method based on spatial confinement to grow such crystals using the prototypical proton transfer system, 1,5-dihydroxyanthraquinone, as an example, and provide the protocol for optically characterizing structural dynamics to enable proper assignments using diffraction methods.

6.
Ultramicroscopy ; 240: 113579, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35780682

RESUMO

The effect of window material on electron beam induced phenomena in liquid phase electron microscopy (LPEM) is an interesting yet under-explored subject. We have studied the differences of electron beam induced gold nanoparticle (AuNP) growth subject to three encapsulation materials: Silicon Nitride (Si3N4), carbon and formvar. We find Si3N4 liquid cells (LCs) to result in significantly higher AuNP growth yield as compared to LCs employing the other two materials. In all cases, an electrical bias of the entire LC structures significantly affected particle growth. We demonstrate an inverse correlation of the AuNP growth rate with secondary electron (SE) emission from the windows. We attribute these differences at least in part to variations in SE emission dynamics, which is seen as a combination of material and bias dependent SE escape flux (SEEF) and SE return flux (SERF). Furthermore, our model predictions qualitatively match electrochemistry expectations.

7.
ACS Appl Mater Interfaces ; 13(33): 39371-39378, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433247

RESUMO

The top-performing perovskite solar cells (efficiency > 20%) generally rely on the use of a nanocrystal TiO2 electron transport layer (ETL). However, the efficacies and stability of the current stereotypically prepared TiO2 ETLs employing commercially available TiO2 nanocrystal paste are far from their maximum values. As revealed herein, the long-hidden reason for this discrepancy is that acidic protons (∼0.11 wt %) always remain in TiO2 ETLs after high-temperature sintering due to the decomposition of the organic proton solvent (mostly alcohol). These protons readily lead to the formation of Ti-H species upon light irradiation, which act to block the electron transfer at the perovskite/TiO2 interface. Affront this challenge, we introduced a simple deprotonation protocol by adding a small amount of strong proton acceptors (sodium ethoxide or NaOH) into the common TiO2 nanocrystal paste precursor and replicated the high-temperature sintering process, which wiped out nearly all protons in TiO2 ETLs during the sintering process. The use of deprotonated TiO2 ETLs not only promotes the PCE of both MAPbI3-based and FA0.85MA0.15PbI2.55Br0.45-based devices over 20% but also significantly improves the long-term photostability of the target devices upon 1000 h of continuous operation.

8.
Microsc Microanal ; 27(1): 44-53, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33280632

RESUMO

Liquid-phase transmission electron microscopy is a technique for simultaneous imaging of the structure and dynamics of specimens in a liquid environment. The conventional sample geometry consists of a liquid layer tightly sandwiched between two Si3N4 windows with a nominal spacing on the order of 0.5 µm. We describe a variation of the conventional approach, wherein the Si3N4 windows are separated by a 10-µm-thick spacer, thus providing room for gas flow inside the liquid specimen enclosure. Adjusting the pressure and flow speed of humid air inside this environmental liquid cell (ELC) creates a stable liquid layer of controllable thickness on the bottom window, thus facilitating high-resolution observations of low mass-thickness contrast objects at low electron doses. We demonstrate controllable liquid thicknesses in the range 160 ± 34 to 340 ± 71 nm resulting in corresponding edge resolutions of 0.8 ± 0.06 to 1.7 ± 0.8 nm as measured for immersed gold nanoparticles. Liquid layer thickness 40 ± 8 nm allowed imaging of low-contrast polystyrene particles. Hydration effects in the ELC have been studied using poly-N-isopropylacrylamide nanogels with a silica core. Therefore, ELC can be a suitable tool for in situ investigations of liquid specimens.

9.
Opt Lett ; 45(8): 2255-2258, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287207

RESUMO

We report on a compact mid-infrared laser architecture, comprising a chain of $ {\rm ZnGeP}_2 $ZnGeP2-based optical parametric amplifiers (OPAs), which afford a higher energy yield ($ \mathbin{\lower.3ex\hbox{$\buildrel \lt \over{\smash{\scriptstyle\sim}\vphantom{_x}}$}} 60\;\unicode{x00B5} {\rm J} $∼x<60µJ at 1 kHz) compared to most conventional OPA gain media transparent in the 2-8-µm wavelength range. Specifically, our OPA scheme allows ready tunability in the molecular fingerprint regime and is tailored for strong-field excitation and coherent control of both stretch and bend (or torsional) vibrational modes in molecules. The OPAs are pumped and directly seeded (via supercontinuum generation) by a 2-µm, 3-ps Ho:YLF regenerative amplifier. The compressibility of the OPA output is demonstrated by a representative measurement of the near-Gaussian temporal profile of a dispersion-compensated 105-fs idler pulse at a central wavelength of 5.1 µm, corresponding to ${\sim}6 $∼6 optical cycles. Detailed numerical simulations closely corroborate the experimental measurements, providing a benchmark and a platform to further explore the parameter space for future design, optimization, and implementation of high-energy, ultrafast, mid-infrared laser schemes.

10.
J Synchrotron Radiat ; 27(Pt 2): 360-370, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153274

RESUMO

Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points. HARE chips allow for optical excitation as well as on-chip mixing for reaction initiation, making a large number of protein systems amenable to time-resolved studies. Loading of protein microcrystals onto the HARE chip is streamlined by a novel vacuum loading platform that allows fine-tuning of suction strength while maintaining a humid environment to prevent crystal dehydration. To enable the widespread use of time-resolved serial synchrotron crystallography (TR-SSX), detailed technical descriptions of a set of accessories that facilitate TR-SSX workflows are provided.

11.
Science ; 365(6458): 1167-1170, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31515393

RESUMO

A comprehensive understanding of protein function demands correlating structure and dynamic changes. Using time-resolved serial synchrotron crystallography, we visualized half-of-the-sites reactivity and correlated molecular-breathing motions in the enzyme fluoroacetate dehalogenase. Eighteen time points from 30 milliseconds to 30 seconds cover four turnover cycles of the irreversible reaction. They reveal sequential substrate binding, covalent-intermediate formation, setup of a hydrolytic water molecule, and product release. Small structural changes of the protein mold and variations in the number and placement of water molecules accompany the various chemical steps of catalysis. Triggered by enzyme-ligand interactions, these repetitive changes in the protein framework's dynamics and entropy constitute crucial components of the catalytic machinery.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico , Hidrolases/química , Rodopseudomonas/enzimologia , Catálise , Entropia , Cinética , Ligantes , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
12.
Nat Methods ; 16(10): 979-982, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31527838

RESUMO

We introduce a liquid application method for time-resolved analyses (LAMA), an in situ mixing approach for serial crystallography. Picoliter-sized droplets are shot onto chip-mounted protein crystals, achieving near-full ligand occupancy within theoretical diffusion times. We demonstrate proof-of-principle binding of GlcNac to lysozyme, and resolve glucose binding and subsequent ring opening in a time-resolved study of xylose isomerase.


Assuntos
Cristalografia/métodos , Síncrotrons , Acetilglucosamina/química , Aldose-Cetose Isomerases/química , Glucose/química , Muramidase/química , Estudo de Prova de Conceito
13.
Rev Sci Instrum ; 90(5): 055109, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31153275

RESUMO

Rapid mixing of aqueous solutions is a crucial first step to study the kinetics of fast biochemical reactions with high temporal resolution. Remarkable progress toward this goal has been made through the development of advanced stopped-flow mixing techniques resulting in reduced dead times, and thereby extending reaction monitoring capabilities to numerous biochemical systems. Concurrently, piezoelectric actuators for through-space liquid droplet sample delivery have also been applied in several experimental systems, providing discrete picoliter sample volume delivery and precision sample deposition onto a surface, free of confinement within microfluidic devices, tubing, or other physical constraints. Here, we characterize the inertial mixing kinetics of two aqueous droplets (130 pl) produced by piezoelectric-actuated pipettes, following droplet collision in free space and deposition on a surface in a proof of principle experiment. A time-resolved fluorescence system was developed to monitor the mixing and fluorescence quenching of 5-carboxytetramethylrhodamine (5-Tamra) and N-Bromosuccinimide, which we show to occur in less than 10 ms. In this respect, this methodology is unique in that it offers millisecond mixing capabilities for very small quantities of discrete sample volumes. Furthermore, the use of discrete droplets for sample delivery and mixing in free space provides potential advantages, including the elimination of the requirement for a physical construction as with microfluidic systems, and thereby makes possible and extends the experimental capabilities of many systems.

14.
Nat Methods ; 15(11): 901-904, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377366

RESUMO

We present a 'hit-and-return' (HARE) method for time-resolved serial synchrotron crystallography with time resolution from milliseconds to seconds or longer. Timing delays are set mechanically, using the regular pattern in fixed-target crystallography chips and a translation stage system. Optical pump-probe experiments to capture intermediate structures of fluoroacetate dehalogenase binding to its ligand demonstrated that data can be collected at short (30 ms), medium (752 ms) and long (2,052 ms) intervals.


Assuntos
Cristalografia por Raios X , Hidrolases/química , Conformação Proteica , Rodopseudomonas/enzimologia , Síncrotrons/instrumentação , Desenho de Equipamento , Modelos Moleculares , Fatores de Tempo
15.
Opt Lett ; 43(18): 4329-4332, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30211856

RESUMO

High-energy, multi-octave supercontinuum (SC) generation in bulk media pumped with picosecond pulses in the mid-infrared, though pivotal in a myriad of applications, poses severe constraints due to wavelength scaling of the critical power criterion and the propensity to induce avalanche-ionization-seeded breakdown mechanisms. Here, we demonstrate a simple experimental geometry, relying on a very low numerical aperture for the pump pulse, and a crystal length commensurate with the Rayleigh length of the focusing geometry, generating a multi-octave, stable SC in yttrium aluminum garnet (YAG). The SC ranges from 500 nm to 3.5 µm (measured at -30 dB with spectral components at wavelengths up to 4.5 µm) when pumped by a 3 ps pulse centered at 2.05 µm in the anomalous dispersion regime. We also investigate the dynamics of filament formation in this interaction regime by monitoring the spectral and temporal evolution of the pulse during its propagation through the length of the crystal.

16.
Rev Sci Instrum ; 86(8): 086105, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26329245

RESUMO

A simple method for the location and auto-alignment of sample fiducials for sample registration using widely available MATLAB/LabVIEW software is demonstrated. The method is robust, easily implemented, and applicable to a wide variety of experiment types for improved reproducibility and increased setup speed. The software uses image processing to locate and measure the diameter and center point of circular fiducials for distance self-calibration and iterative alignment and can be used with most imaging systems. The method is demonstrated to be fast and reliable in locating and aligning sample fiducials, provided here by a nanofabricated array, with accuracy within the optical resolution of the imaging system. The software was further demonstrated to register, load, and sample the dynamically wetted array.

17.
Opt Express ; 18(20): 20712-22, 2010 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-20940967

RESUMO

Thin disk laser experiments with Yb:LuAG (Yb:Lu(3)Al(5)O(12)) were performed leading to 5 kW of output power and an optical-to-optical efficiency exceeding 60%. Comparative analyses of the laser relevant parameters of Yb:LuAG and Yb:YAG were carried out. While the spectroscopic properties were found to be nearly identical, investigations of the thermal conductivities revealed a 20% higher value for Yb:LuAG at Yb(3+)-doping concentrations of about 10%. Due to the superior thermal conductivity with respect to Yb:YAG, Yb:LuAG offers thus the potential of improved performance in high power thin disk laser applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...